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As an application measurements on LiF and NaC1 
were performed. Studying different orders of refleixon 
of the same crystal one gets informat ion on the size 
distribution of the mosaic blocks as a function of the 
distance from the surface. It was found that in the 3 
crystals examined the sizes were much larger on the 
surface than below it. This can easily be explained by 
recrystallization processes under the influence of water 
vapour, which takes place mostly on the surface of the 
crystals. The influence of secondary extinction was 
remarkable for the strong reflexions (up to 80%), 
while the fraction of 1-phonon scattering had to be 
taken into consideration only for the high orders of re- 
flexion (up to 13 %). These results are of general impor- 
tance to eliminate systematic errors in absolute intensity 
measurements. In this way more correct data for atom 
factors and electron-density maps (time average) are 
attainable. 
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In order to correct X-ray integrated intensities for thermal diffuse 1-phonon scattering, the influence 
of the anisotropy of the lattice vibrations was examined. Using an oscillating-crystal technique with 
a long slit between source and goniometer, it is shown that the anisotropy of the three-dimensional 
intensity function of the 1-phonon scattering is smeared out by means of a twofold integration, such 
that an isotropic approximation can be applied. In all cases under investigation (NaCI, LiF) the sys- 
tematic error was less than 1% of the total integrated intensity of a reflexion if this approximation was 
applied. An elegant criterion is given to test the applicability of the spherically symmetric isotropic 
approximation. 

1. Introduction 

In order to calculate structural amplitudes from meas- 
ured absolute X-ray intensities one has to correct the 
integrated intensities for thermal diffuse scattering 
(TDS). A method for the determination of the fraction 
of the TDS 1-phonon scattering, after Bradaczek & 
Hosemann (1968)and Urban & Hosemann (1972) is 
based on a synthesis of the measured line-profiles. 
This synthesis requires the knowledge of the relative 
shape of TDS. Neglecting many-phonon scattering, 
the shape of the thermal diffuse 1-phonon scattering 
curve may be calculated in the 'harmonic approxima- 
tion' from the knowledge of the elastic constants (Born 
& Huang, 1954; Wooster, 1962; Maradudin, Montroll  
& Weiss, 1963). The intensity distribution round a 
reciprocal-lattice point is in general anisotropic. Meas- 
uring the line profile of a reflexion by the method of 
Bradaczek & Hosemann means scanning a two-di- 
mensional intergral of the intensity function of a single 

crystal. If the 1-phonon scattering is isotropic, the two- 
fold integration leads to analytic functions; if an aniso- 
tropic model is used all the calculations are much more 
complicated. In the following we show that under special 
experimental conditions the influence of anisotropy on 
TDS for NaC1 and LiF can be neglected. A method for 
testing whether the isotropic or the anisotropic model 
has to be used will be given. 

2. The shape of thermal diffuse 1-phonon scattering 

It is well known (e.g. Maradudin et al., 1963) that the 
shape of the 1-phonon scattering near a reciprocal- 
lattice point is proportional to: 

3 cos 2 4 i (k) 
sin' o .,--1E Iki (1) 

[4 : density (g.cm-a), Vj : velocity of the j-mode lattice 
vibration; ~j(k): angle between the polarization vector 
j of the acoustic wave and the reciprocal vector h ([b] = 
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2 sin 0/2, 2 being the wavelength of the radiation used); 
k: reciprocal vector, indicating the distance from the 
reciprocal-lattice point b0 ([bo] = 2 sin 0o/2); 20: scat- 
tering angle; 00: Bragg angle of the centre of the reflex- 
ion]. 

For convenience we put each V: = constant. Then 
this approximation holds for the acoustic modes of the 
elastic waves near the reciprocal-lattice point b0. In 
order to evaluate the term ~ cos 2 ~ j / Q V ~ ,  we start 
with the wave-equation (Born & Huang, 1954; Woo- 
ster, 1962), which also only holds for small wave- 
vectors k, 

[u: oscillation vector of the lattice points; f~: direc- 
tional cosine of the wave-vector k; c,o~: elastic con- 
stants (~,fl, 7, 2 = 1,2, 3)]. 

Introducing the matrix A 

one obtains 
~V2H~ = ~ ABo~U ~ . (2a) 

p 

From equation (2a) one can calculate the eigenvalues 
of the equation using 

where 
I A - D I : O  (2b) 

oV 0 0 ) 
D =  0 0V 2 0 

0 0 o V  2 . 

With these eigenvalues one can calculate the eigen- 
vectors u and one obtains, 

b .  uj 2 sin 0 
cos ~ j =  Ibl [ujl ' Ibl-  

3. Integration of  the T D S  

In order to compare the shape of the TDS curve with 
measured line profiles one has to integrate equation (1) 
in two directions. The integration area depends on the 
particular experimental conditions. We used an oscil- 
lating crystal technique with a long slit in the primary 
beam (see Fig. 1). The area of integration then lies on 
the surface of a cylinder with radius 

2 200+fl 
r =  - - f  sin 2 (3a) 

where fl is given by the intersection of the cylinder 
with the Ewald sphere in the goniometer plane [Fig. 
l(a)]. The oscillating amplitude is z0 the radius of the 
goniometer R and the length of the primary beam L 
on the film, and the maximum angle Co according to 
Fig. l(b) is given by 

L 
tg ~0 = 2R " 

k ]  k 

t : kz  

k4 

(a) 

filmJ 
/ 

(b) 

Fig. l(a). Reciprocal space for the definition of the angular 
coordinates % fl, ~. kl, k2, k3 are orthogonal coordinates of 
k. Projection on the film describing the angular coordinates 
~0, P. 

The integration then runs over ~ and z as a function of 
/3. To register the line profiles, a film was put in a fixed 
position perpendicular to the reflected beam, while the 
sample was oscillated. [For a more detailed description 
of the technique used see Urban & Hosemann (1972)]. 

The cylinder coordinates are given by r, z k3 with 

1 
ka= - f  tg ~.  (3b) 

The surface element of the r cylinder is: 

2 200 +fl 1 
d f=  r d z  dk3 = -if- sin ~ cosZ ~ dzd~. 

As can be seen from Fig. l(a), the position of the 
maximum of the profile is shifted to larger 0 values 
with increasing r and the oscillation must be adjusted 
so that - r0-f l /2 < z < Zo - f l /2.  

The shape of the TDS curve is defined by 

l "°-B12 sin (20°2+fl) 1 ZTDs(P) ~ I~0 ,_~0_p, 2 COS2~ 

{ ( 7 t  } x sin z 20 fl +sin2~/2 J=~ O g$ lk l  2 (4) 

The evaluation of equation (4) requires a computer, 
because one has to evaluate equations (2a) and (2b) 
for a large number of reciprocal points k.We used an ICT 
1909 computer and found the calculation time to be 
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several hours per reflexion. We also tried to make the 
cos2~j  

calculation using an isotropic model although ~ Q V~ 

shows a large anisotropy (see Fig. 2). It was hoped that 
the twofold integration over df  would smear out the 
anisotropy to such an extent that, within the errors of 
measurement, the isotropic approximation would give 
the same result. 

I,I" 

• ,~ s,t 

C12"137 ~tO 11 dyn/cm l 

c w 2~64j 

(a) 

Cll- 9.71] 
c~-2,3f~e .~q~\  \ II ]] l / / c i 
C~.- 2.80J 

(b) 

(ff / 5 
t\ I/ .... 
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(c) 
Fig. 2. Spherical diagrams of g((, (a) of the h00 reflexions. 

3 cos2 ~(k,) 
(a) NaCl (b) NaF (c) LiF. Anisotropy: ~ 

.S=l  Vi 2 

4. The anisotropy of  TDS 

The large anisotropy of the term 
3 

g((,~0)= ~, COS2 (~j (k) (4b) 
j=l ~V} 

can be seen in the polar diagrams of Fig. 2 for source 
reflexions (h00). ( a n d  ~0 are the polar angles, ( = 0  
is the [001] direction and ( =  ~/2; p=0  the [100] direction 
of the cubic crystal. The function was calculated using 
equations (2a) and (2b) with the tabulated elastic 
constants for NaCI, LiF and NaF. In the polar 
diagrams (Fig. 2) the distance from the centre to each 
curve is directly proportional to g((, ~0). 

5. The isotropic approximation 

For convenience in the further calculations we intro- 
duce the following three approximations. 

COS 2 ~ j  
1. J ~ Q----~- --c, c being a constant. 

Since the contribution of 1-phonon scattering to the 
integral intensity of the reflexion can be obtained by 
the analysis of the relative shape of line profiles, the 
value of c is of no interest. 
2. The two-dimensional integration is not carried out 
along the r cylinder [Fig. (la)] but along a tangential 
plane with the element df~ =dk2.dk3; kl, k2, k3 are 
orthogonal coordinates of k. 

3. sin E 0-- sin E 20___tiff + sin2 2- is replaced by sin 2 00. 

The limits of the integration in the coordinates k2, k3 
are 

k0_ sin 00 
2 tgr0, 

L 
k ° -  2r"  

Using these approximations equation (4) reduces to 

fk2 k3 0 1 
/TDs(kl) ~ 2 2 -k2 ,,-k3o kz+kz+k]  dkzdk3 . (5) 

To compare equation (4) with equation (5), one has 
to express kz in terms of fl [see Fig. l(a)], such that 

tgfl cos 00 
k z -  2 

For large enough values of k ° (large oscillation angles 
%) the k2 integration limit can be put equal to infinity 
and this leads to the expression, 

ITDs(kl) = In [ -.-.k° o ~ 62- (6) [ -/ '3+ l/f,,+k3 
This function is compared for several reflexions of LiF 
and NaC1 with the anisotropic solution of equation (4), 
(Fig. 3). The constant e is chosen so that the functions 
are practically identical in the outer domain. This kind 
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of fitting is of practical interest since the outer tails of 
experimentally observed line profiles are essentially 
proportional to I~os. 

The calculated and approximated ITos curves are 
in good agreement, except for small values of k~ 
(or fl). Since the isotropic approximation does not take 
into account that, according to Fig. 2, the ITos function 
is more extended for the h00 reflexions in all direc- 
tions orthogonal to [100], the integral value of the 
approximated and fitted Ixos is systematically too small 
in these areas, but as can be seen from Fig. 3, the de- 
viation is less than 10%. Since the correction of the in- 
tegrated intensities for 1-phonon scattering of the re- 
flexions 333,600,444 and 800 is of the order of 10 %, the 
approximation contributes a systematic error of less than 
1% to the total integral intensity, which is negligible 
in absolute terms. 

We can conclude that the isotropic model is a good 
enough approximation under our experimental condi- 
tions for the eliminating of ITos from integrated 
intensities for LiF and NaCI. 

6. Advantages of the isotropie approximation 

As we have seen in the preceding section, the isotropic 
approximation was valid for the elimination of the 

1-phonon contribution to the integrated intensity of a 
reflexion, and had the great advantage that, instead of 
tedious calculations with a computer, an elegant 
analytic expression [equation (6)] could be used. If, 
however, in the experiment the kz integration is not 
performed over a large enough range, numerical cor- 
rections can easily be introduced but we will not discuss 
these in detail here. 

If this approximation is valid, one only has to discuss 
two experimental intensity values in the tail of the 
observed line profile, one not too near the centre so 
that the profile is practically proportional to ITOS and 
the other not too far from the centre so that it can be 
separated from the background. The synthesis of the 
calculated intensity can then easily be performed and 
the independent parameters varied until the outer tail 
fits the observed profile* within the errors of experiment. 

In this section we now give an elegant way to test 
whether or not approximation is applicable. Firstly, 
from the elastic constants are calculated the function 

[lIFb2g(~'q))dflkl=COnSt. (7) 
h(C, ~o)= b~ Ikl' 

* See for details Urban & Hosemann (1972). 
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Fig. 4. The function h(~/2, (0) defined by equation (7) for several 
hkO reflexions Of NaC1. 

The area F of integration in the k2k3 plane has to be 
kept constant in b space for all reflexions. This integral 
is evaluated for two different kl values, which are the 
same for all reflexions and have the positions mentioned 
above so as to give a practicable synthesis of the line 
profile. 

In our experiments the kl values were chosen to be 

4,78 x 10 -4 A. -I- and 4,78 x 10 -a A - l ,  

[see Fig. 3(a)]. In Fig. 4 the function h(~z/2, ~0) is plotted 
in polar coordinates for several reflexions of NaC1. 
Within + 10 % theh function shows spherical symmetry. 
As mentioned previously the isotropic approximation 
can now be used to calculate the correction for 1-phonon 
scattering to an accuracy of about 1% (or less) of the 
total integrated intensity of a reflexion. 

7. Summary 

Using a special experimental technique after Bradaczek 
& Hosemann (1968) and Urban & Hosemann (1972) to 

analyse X-ray line profiles, the relative intensity 
distribution of the thermal diffuse 1-phonon scattering 
was calculated for NaCI and LiF from tabulated 
elastic constants. Since these calculations are tedious 
and require long computer times we looked for a 
criterion which clearly defines the validity of an iso- 
tropic approximation, which has the advantage of 
using an analytic expression for ITDS which can easily 
be handled without long computing times. Although 
the thermal diffuse scattering is anisotropic, it was 
demonstrated that under our special experimental con- 
ditions, an isotropic model is applicable for NaC1 and 
LiF after a twofold integration in reciprocal space. 
The integration was performed over the oscillation 
angle of the crystal and the length of the primary beam 
for two special k values of interest for the line 
profile analysis. The deviation from spherical sym- 
metry is less than 10 %. The calculated approximation 
for ITDS is practically identical with the exact function 
for kl > 5 x 10-4 A--1. Only in the core of the line 
profile is there a small deviation, where the integrated 
intensities of Iros deviate by less than 10 %. 

It has been shown that by this method it is pos- 
sible to eliminate the contribution of the 1-phonon 
scattering with a systematic error of less than 1% of 
the total integrated intensity. In a spherical diagram 
(Fig. 4) the relative intensities of TDS for many 
reflexions is shown. 
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